Solution to the Black-Scholes equation through the Adomian decomposition method

Solution to the Black-Scholes equation through the Adomian decomposition method

The Adomian Decomposition Method (ADM) is applied to obtain a fast and reliable solution to the Black-Scholes equation with boundary condition for a European option. We cast the problem of pricing a European option with boundary conditions in terms of a diffusion partial differential equation with h...

Guardado en:
Título de la revista: ECORFAN Journal-Mexico
Primer autor: Luis Blanco Cocom
Otros autores: Eric Ávila Vales;
Ángel G. Estrella
Palabras clave:
Idioma: Inglés
Enlace del documento: http://www.ecorfan.org/pdf/ECORFAN%20Journal-M%C3%A9xico%20V2%20N5_5.pdf
Tipo de recurso: Documento de revista
Fuente: ECORFAN Journal-Mexico; Vol 2, No 5 (Año 2011).
Entidad editora: ECORFAN México
Organismos colaboradores: INEDITO
Derechos de uso: Sin permisos preestablecidos
Materias: Ciencias Sociales y Humanidades --> Negocios
Documentos citados: C. Satke (2009). A numerical solver for the multivariate Black-Scholes problem using the multigrid method. TechnischeUniversität Wien. Diplomarbeit. URL: http://www.asc.tuwien.ac.at/~dirk/download/thesis/satke.pdf

E. J. Ávila-Vales (1998). Opciones para ciertos riesgos. Eureka. 13, pp. 64-70.

F. Black, M. Scholes (1973). The pricing of option and corporate liabilities. The Journal of Political Economy. 81(3), pp. 637-654.

G. Adomian, R. Rach (1992). A further consideration of partial solutions in the decomposition method.Comput. Math. Appl. 23, pp. 51–64.

G. Adomian, R. Rach (1983). Nonlinear stochastic differential delay equations. J.Math. Anal. Appl. 91, pp.94-101.

G. Barone-Adesi and R Whaley (1978). Efficient analytic approximation of American option values. J. Finance 42, pp. 301–320.

G. Barone-Adesi and R. Elliot (1991). Approximations for the values of American options, Stochastic Anal. Appl. 9, pp. 115–131.

G. Barone-Adesi (2005). The saga of the American put. J. Banking Finance. 29, pp. 2909–2918.

G. Courtadon (1982). A more accurate finite difference approximations for the valuation of options, J. Finan. Quart. Anal. 17, pp. 697–703

J. Cheng, S.-P. Zhu, S.-J. Liao (2010). An explicit series approximation to the optimal exercise boundary of American put options. Communications in Nonlinear Science and Numerical Simulations. 15( 2), pp. 1148-1158.

J. Zavaleta-Sánchez (2007). Aplicaciones computacionales de las EDP’s asociadas a procesos estocásticos. Universidad Tecnológica de la Mixteca. Tesis de Licenciatura. URL: http://jupiter.utm.mx/~tesis_dig/10330.pdf

K. Abbaoui, Y. Cherruault (1994). Convergence of Adomian’s method applied to differential equations. Comput. Math. Appl. 28(5), pp. 103-109.

K. Abbaoui, Y. Cherruault (1995). New ideas for proving convergence of decomposition methods. Comput. Math. Appl. 29(7), pp. 103-108.

L. D. Blanco-Cocom, E. J. Ávila-Vales (2010). The use of the Adomian decomposition method for a Sirc influenza model. Advan. in Diff. Eq. and Control. Proc. 5(2), 115-127.

M. Bohner, Y. Zheng (2009). On analytical solutions of the Black-Scholes equation. Appl. Math. Lett. 22(3), pp. 309-313.

M. Pujol, P. Grimalt (2003). A non-linear model of cerebral diffusion: stability of finite differences method and resolution using the Adomian method. Int. J. of Num. Math. for Heat and Fluid Flow. 13(4), pp. 473-485.

O. D. Makinde (2007). Solving ratio-depentpretator-prey system with constant effort harvesting using adomiandecompositin method. Appl. Math. Comput. 186, pp. 17-22.

P. Wilmott, S. Howison, J. Dewynne, TheMathematics of Financial Derivatives. Cambridge University Press, Cambridge,1997.

R. Geske and H. Johnson (1984). The American put options valued analytically, J. Finance. 39, pp. 1511–1524.

S. Shuka (2001). Finite-difference methods for pricing the American put option. Advanced Mathemathics if finance Honours Project. URL:http://www.mendeley.com/research/advanced-mathematics-finance-honours-project-finitedifference-methods-pricing-american-put-option/

W. Chen and Z. Lu (2004). An algorithm for Adomian Decomposition Method. Applied Mathematics and Computation. 159, 221-235.

W. MacMillan (1986). An analytical approximation for the American put prices, Adv. Futures Options Res. 1, pp. 119–139.

V. GülakÇ(2010). The homotopy perturbation method for the Black-Scholes equation. J. Stat. Comput. Simulation. 80(12), pp. 1349-1354.

X.G. Luo, Q.B. Wu, B.Q. Zhang (2006). Revisit on partial solutions in the Adomian decomposition method: Solving heat and wave equations.Journal of Mathematical Analysis and Applications. 321 (1), pp. 353-363.

Y. Cherruault (1989). Convergence of Adomian’s method. Kybernetes. 18(2), 31-38.

Y. Cherruault, G. Adomian (1993). Decomposition methods: a new proof of convergence. Math. Comput. Modelling, 18(12), pp. 103-106.