Biotecnología marina y acuicultura
Debido a la situación de los caladeros y al encarecimiento del proceso extractivo, el consumo de pescado y marisco se apoya cada vez más en la acuicultura. España es el tercer país consumidor de pescado del mundo, por detrás tan solo de Japón y Noruega. La biotecnología puede acelerar la consecución de estos objetivos. Sin embargo, no todo es producción de alimento; gracias a la biotecnología asociada al mundo acuático podemos generar combustible, energía, medicamentos y muchas otras aplicaciones que nos permiten valorar cada vez con más la riqueza del mar y su biodiversidad.
As a result of overfishing and the escalating cost of fishing, fisheries are unable to provide all the marine products that the world market demands. This shortfall is being met by aquaculture. After Japan and Norway, Spain is one of the world’s leading consumers of fish and seafood. To reduce the losses from disease, increase growth and reproduction rates and juveniles survival... Biotechnology can help achieve these goals. However, there is more than food production in the use of Biotechnology in the marine world. Generation of biodiesel, medicines or new materials have their roots on the application of biotechnology to the marine world.
Bibliographic data
Translated title: | Marine biotechnology and aquaculture |
---|---|
Journal Title: | Arbor |
First author: | Antonio Figueras |
Other Authors: | Beatriz Novoa |
Palabras clave: | |
Traslated Keywords: | |
Language: | Spanish |
Get full text: | http://arbor.revistas.csic.es/index.php/arbor/article/view/1955 |
Resource type: | Journal Article |
Source: | Arbor; Vol 190, No 768 (Year 2014). |
DOI: | http://dx.doi.org/10.3989/arbor.2014.768n4007 |
Publisher: | Consejo Superior de Investigaciones Científicas CSIC |
Usage rights: | Reconocimiento (by) |
Knowledge areas / Categories: | Social Sciences/Humanities --> Humanities, Multidisciplinary |
Statistical data
- Views
- Consultations
- Citation style
- Share
- Export record
- Favourites
Bibliometric data
WOS
Bibliography: | Arrieta, J.M., Arnaud-Haond, S. y Duarte, C. M. (2010). What lies underneath: conserving the oceans' genetic resources. Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 18318-18324. http://dx.doi.org/10.1073/pnas.0911897107 PMid:20837523 PMCid:PMC2972965 Balseiro, P., Falcó, A., Romero, A., Dios, S., Martínez-López, A., Figueras, A., Estepa, A. y Novoa, B. (2011). Mytilus galloprovincialis myticin C: a chemotactic molecule with antiviral activity and immunoregulatory properties. PLoSOne, 6, p. e23140. http://dx.doi.org/10.1371/journal.pone.0023140 PMid:21858010 PMCid:PMC3152575 Baranski, M., Moen, T. y Våge, D.I. (2010). Mapping of quantitative trait loci for flesh colour and growth traits in Atlantic salmon (Salmosalar). Genetics Selection Evolution, 42, p. 17. http://dx.doi.org/10.1186/1297-9686-42-17 PMid:20525320 PMCid:PMC2900243 Barboza, N.M., Medina, D. J., Budak-Alpdogan, T., Aracil, M., Jimeno, J. M., Bertino, J. R. y Banerjee, D. (2012). Plitidepsin (Aplidin) is a potent inhibitor of diffuse large cell and Burkitt lymphoma and is synergistic with rituximab. Cancer Biology and Therapy, 13, pp.114-122. http://dx.doi.org/10.4161/cbt.13.2.18876 PMid:22336911 PMCid:PMC3336068 Carrasco, F. y Pagès, P. (2004). Kinetics of the Thermal Decomposition of Green Alga Ulva by Thermogravimetry. Journal of Applied Polymer Science, 93, pp. 1913-1922. http://dx.doi.org/10.1002/app.20675 Cataldo, F., Carrasco, F., Paradossi, G., Cavalieri, F., Abati, G. y Esposito, L. (2006). Procedimento e formulazioni per la preparazione di mescolanze mediante l'impiego di biomasse come ad esempio ulva e ulvano come biopolimerinaturali e loro impiego nella fabbricazione di pneumatici e di altri manufatti in gomma. Italia. Número de patente: 0001333847. Chen, S., Zhang, C., Shao, C. et al. (2014). Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 46, pp. 253-260. http://dx.doi.org/10.1038/ng.2890 PMid:24487278 Chivian, E. y Bernstein, A. (2008). Sustaining Life. Oxford: Oxford University Press. PMid:18845759 Davidson, W.S., Koop, B. F., Jones, S., Iturra, P., Vidal, R., Maass, A., Jonassen, I., Lien, S. y Omholt, S. (2010). Sequencing the genome of the Atlantic salmon (Salmosalar). Genome Biology, 11, p. 403. PMid:20887641 PMCid:PMC2965382 Figueras, A. (2007). Biología y cultivo del mejillón (Mytilus galloprovincialis) en Galicia. Madrid: Consejo Superior de Investigaciones Científicas. Figueras, A., Costa, M.M. y Novoa, B. (2012). Applications of Functional Genomics in Molluscs Aquaculture. En Saroglia, M. y Liu, J. (eds.), Functional genomics in aquaculture. West Sussex: Wiley-Blackwell, pp. 377-395. Ghodbane, R., Ameen, S.M., Drancourt, M. y Brunel, J.M. (2013). In vitro antimicrobial activity of squalamine derivatives against mycobacteria. Tuberculosis (Edinb), 93, pp. 565-566. http://dx.doi.org/10.1016/j.tube.2013.04.006 PMid:23735598 Gutierrez, A.P., Lubieniecki, K. P., Davidson, E. A., Lien, S., Kent, M. P., Fukui, S., Withler, R. E., Swift, B. y Davidson, W. S. (2012). Genetic mapping of quantitative trait loci (QTL) for body-weight in Atlantic salmon (Salmosalar) using a 6.5 K SNP array. Aquaculture, 358-359, pp. 61–70. http://dx.doi.org/10.1016/j.aquaculture.2012.06.017 Houston, R.D., Haley, C. S., Hamilton, A., Guy, D. R., Tinch, A. E., Taggert, J. B., McAndrew, B. J. y Bishop, S. C.(2008). Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmosalar). Genetics, 178, pp. 1109-1115. http://dx.doi.org/10.1534/genetics.107.082974 PMid:18245341 PMCid:PMC2248365 Iversen, E.S. (1976). Farming the edge of the sea. London: Fishing News (Books) Ltd. Kang, N.H., Lee, W. K., Yi, B. R., Lee, H. R., Park, M. A., Park, S. K., Park, H. K. y Choi, K. L. (2013). Risk of cardiovascular disease is suppressed by dietary supplementation with protamine and chitooligosaccharide in Sprague-Dawley rats. Molecular Medicine Reports,7, pp. 127-133. PMid:23064235 Kijjoa, A. y Sawangwong, P. (2004). Drugs and cosmetics from the sea (review paper). Marine Drugs, 2, pp. 73-82. http://dx.doi.org/10.3390/md202073 PMCid:PMC3783861 Ledford, H. (2013). Transgenic salmon nears approval. Nature, 497, pp. 17-18. http://dx.doi.org/10.1038/497017a PMid:23636372 Lee, H., Scherer, N.F. y Messersmith, P.B. (2006). Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 12999-13003. http://dx.doi.org/10.1073/pnas.0605552103 PMid:16920796 PMCid:PMC1559742 Milne, P. H. (1972). Fish and Shellfish Farming in Coastal Waters. London: Fishing News (Books) Ltd. Moneo, V., Serelde, B. G., Blanco-Aparicio, C., Diaz-Uriarte, R., Avilés, P., Santamaría, G., Tercero, J. C., Cuevas, C. y Carnero, A.(2014). Levels of active tyrosine kinase receptor determine the tumor response to Zalypsis. BMC Cancer, 14, p. 281. http://dx.doi.org/10.1186/1471-2407-14-281 PMid:24758355 PMCid:PMC4023704 Rise, M.L., von Shalburg, K. R., Brown, B. D., Mawer, M. A., Devlin, R. H., Shukin, R., Zeznik, J. A., Nelson, C., Jones, S. R., Smailus, D. E., Jones, S. J., Schein, J. E., Marra, M. A., Butterfield, Y. S., Stott, J. M., Nq, S. H., Davidson, W. S. y Koop, B. F. (2004). Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Research, 14, pp. 478-490. http://dx.doi.org/10.1101/gr.1687304 PMid:14962987 PMCid:PMC353236 Salazar, R., Cortés-Funes, H., Casado, E., Pardo, B., López-Martín, A., Cuadra, C., Tabernero, J., Coronado, C., García, M., Soto Matos-Pita, A., Miguel-Lillo, B., Cullel- Young, M., Iglesias Dios, J. L. y Paz-Ares, L. (2013). Phase I study of weekly kahalalide F as prolonged infusion in patients with advanced solid tumors. Cancer Chemotherapy Pharmacology, 72, pp. 75-83. http://dx.doi.org/10.1007/s00280-013-2170-5 PMid:23645288 Shimomura, O. (2009). Discovery of green fluorescent protein (GFP) (Nobel Lecture). Angewandte Chemie International Edition England, 48, pp. 5590-5602. http://dx.doi.org/10.1002/anie.200902240 PMid:19579247 Soh, L., Montazeri, M., Haznedaroqlu, B. Z., Kelly, C., Peccia, J., Eckelman, M. J. y Zimmerman, J. B. (2014). Evaluating microalgal integrated biorefinery schemes: empirical controlled growth studies and life cycle assessment. Bioresource Technology, 151, pp. 19-27. http://dx.doi.org/10.1016/j.biortech.2013.10.012 PMid:24189381 Takeuchi, T., Kawashima, T., Koyanagi, R., Gyoja, F., Tanaka, M., Ikuta, T., Shoguchi, E., Fugiwara, M., Shinzato, C., Hisata, K., Fujie, M. Usami, T., Nagai, K., Maeyama, K., Okamoto, K., Aoki, H., Ishikawa, T., Masaoka, T., Fujiwara, A., Endo, K., Endo, H., Nagasawa, H., Kinoshita, S., Asakawa, S., Watabe, S. y Satoh, N. (2012). Draft genome of the pearl oyster Pinctadafucata: a platform for understanding bivalve biology. DNA Research, 19, pp. 117-130. http://dx.doi.org/10.1093/dnares/dss005 PMid:22315334 PMCid:PMC3325083 Vanegas, C.H. y Bartlett, J. (2013). Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species. Environmental Technology, 34, pp. 2277-2283. http://dx.doi.org/10.1080/09593330.2013.765922 PMid:24350482 Wang, C.S. y Stewart, R.J. (2012). Localization of the bioadhesive precursors of the sandcastle worm, Phragmatopoma californica (Fewkes). Journal of Experimental Biology, 215, pp. 351-361. http://dx.doi.org/10.1242/jeb.065011 PMid:22189779 Zhang, G., Fang, X., Guo, X. et al. (2012). The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490, pp. 49-54. http://dx.doi.org/10.1038/nature11413 PMid:22992520 |
---|